Homework 3 Algebra

Joshua Ruiter

April 7, 2018

Lemma 0.1 (for Exercise 1a). Let \mathbb{Z}_n be the finite cyclic group of order n. Then $\operatorname{Aut}(\mathbb{Z}_n)$ has order $\phi(n)$ (ϕ is the Euler totient function).

Proof. First we show that $\operatorname{Aut}(\mathbb{Z}_n)$ has order $\phi(n)$. By Proposition 4.3(ii) (Lang), the generators of \mathbb{Z}_n are the positive integers a less than n that are relatively prime to n. By 4.3(iii) (Lang), for any such a relatively prime to n, there is an automorphism $\gamma_a : \mathbb{Z}_n \to \mathbb{Z}_n$ that maps 1 onto a. This determines γ_a completely. Thus there are exactly $\phi(n)$ automorphisms of \mathbb{Z}_n .

Corollary 0.2 (for Exercise 1a). Let \mathbb{Z}_p be a cylic group of prime order. Then $\operatorname{Aut}(\mathbb{Z}_p)$ has order p-1.

Proof. By above, $\operatorname{Aut}(\mathbb{Z}_p)$ has order $\phi(p)$. $\phi(p)$ counts the number of positive integers less than p that are coprime with p. As p is prime, this is all the numbers $1, 2, \ldots p-1$. Thus $\phi(p) = p-1$.

Lemma 0.3 (for Exercise 1a). Let G, H be finite groups such that gcd(|G|, |H|) = 1. Then any group homomorphism $\psi : G \to H$ is trivial, that is, $\phi(g) = e_H$ for $g \in G$.

Proof. We know that $\psi(G)$ is a subgroup of H, so by Lagrange's Theorem, $|\psi(G)|$ divides |H|. We also know that $\ker \psi$ is a normal subgroup of G, so by the first isomorphism theorem, $G/\ker \psi \cong \psi(G)$ so $|\psi(G)| = |G|/|\ker \psi|$ so $|\psi(G)|$ divides |G|. Since $\gcd(|G|, |H|) = 1$ by hypothesis and $|\psi(G)|$ divides both, it must be one. Thus $\psi(G) = \{e\}$.

Lemma 0.4. Let G be a group, and let P be a p-subgroup and Q be a q-subgroup, where p, q are distinct primes. Then $P \cap Q = \{e\}$.

Proof. Any $x \in P$ has order divisible by p, except the identity. Any $y \in Q$ has order divisible by q, except the identity. Since p, q are primes, this means that $P \cap Q = \{e\}$.

Lemma 0.5 (for Exercise 1a). Let G, H be cyclic groups of coprime order. Then $G \times H$ is cyclic.

Proof. Let g be a generator for G and h a generator for H. We claim that (g,h) is a generator for $G \times H$. We know that the order of (g,h) divides pq, the order of $G \times H$. Hence it has order 1, p, q, or pq. It can't have order 1. It doesn't have order p since p has order p and p, q are coprime. Similarly, it doesn't have order p. Thus p has order p so it generates p it generates p in p has order p so it generates p in p has order p has or

Proposition 0.6 (Exercise 1a). Let G be a group of order pq where p, q are primes such that p < q and $q \not\equiv 1 \mod p$. Then G is cyclic.

Proof. Let H_q be the Sylow subgroup of order q. Then H_q is normal by Lemma 6.7 (Lang). Let H_p be the Sylow subgroup of order p. Then H_p operates by conjugation on H_q , which gives us a homomorphism $\psi: H_p \to \operatorname{Aut}(H_q)$ (where $\psi(x)$ is the conjugation $y \mapsto xyx^{-1}$). We know that H_p has order p, and by our lemma, $\operatorname{Aut}(H_q)$ has order q-1.

By hypothesis, $q \not\equiv 1 \mod p$, so p does not divide q-1. Since p is prime, this means that $\gcd(p,q-1)=1$. Thus by our second lemma, ψ is the trivial homomorphism. This implies that for $x \in H_p, y \in H_q$, we have $xyx^{-1} = y \implies xy = yx$. Finally, we also have $P \cap Q = \{e\}$, so by Proposition 2.1 (Lang), $G \cong P \times Q$. By our last lemma, the product of cyclic groups of coprime order is cyclic, so G is cyclic of order pq.

Lemma 0.7 (for Exercise 1b). Let N, H be groups and $\psi : H \to \operatorname{Aut}(N)$. Then the semidirect product $N \rtimes_{\psi} H$ is abelian if and only if N, H are both abelian and ψ is the trivial homomorphism.

Proof. First suppose that N, H are abelian and ψ is trivial, that is, $\psi(h) = \mathrm{Id}_N$ for $h \in H$. Then the product in $N \rtimes H$ is given by

$$(n_1, h_1)(n_2, h_2) = (n_1\psi(h_1)n_2, h_1h_2) = (n_1n_2, h_1h_2)$$

so $N \rtimes H \cong N \oplus H$, hence $N \rtimes H$ is abelian.

Now suppose that $N \rtimes H$ is abelian. Then every subgroup is abelian, so by identifying N, H with the subgroups

$$N \cong \{(n, e_H) : n \in N\} \subset N \rtimes H$$

$$H \cong \{(e_N, h) : h \in H\} \subset N \rtimes H$$

we see that N, H must be abelian. As H is normal, ψ must be trivial by Exercise 12(b) from Homework 2.

Proposition 0.8 (Exercise 1b). Let G be a group of order pq where p, q are primes such that p < q and $q \equiv 1 \mod p$. Then there exists a nonabelian group of order pq.

Proof. We repeat the first paragraph of the proof for part (a) since it still holds. Let H_q, H_p be Sylow subgroups of order q, p. Then H_q is normal, and H_p operates by conjugation on H_q , which gives a homomorphism $\psi: H_p \to \operatorname{Aut}(H_q)$. H_p has order p, and $\operatorname{Aut}(H_q)$ has order q-1.

Now the proof diverges. By hypothesis, p|(q-1). Since $\operatorname{Aut}(H_q)$ has order q-1, by Cauchy's Theorem there exists an element of $y \in \operatorname{Aut}(H_q)$ of order p. Let x be a generator of H_p . Then we define

$$\phi: H_p \to \operatorname{Aut}(H_q)$$
$$\phi(x) = y$$

and we extend ϕ to a homomorphism by defining $\phi(x^k) = \phi(x)^k = y^k$. Thus ϕ is a nontrivial homomorphism, so by the above lemma, $H_q \rtimes_{\phi} H_p$ is nonabelian. Thus $H_q \rtimes_{\phi} H_p$ is a nonabelian group of order pq.

Lemma 0.9 (for Exercise 2). Abelian groups are solvable.

Proof. Let G be an abelian group. Then $G \supset \{e\}$ is a normal abelian tower, so G is solvable.

Corollary 0.10 (for Exercise 2). Cyclic groups are solvable.

Proof. Every cyclic group is abelian, and hence solvable by the above lemma. \Box

Lemma 0.11 (for Exercises 2,28). Let P, P' be p-Sylow subgroups of G with |P| = |P'| = p. Then P = P' or $P \cap P' = \{e\}$.

Proof. As P, P' are subgroups, their intersection $P \cap P'$ is a subgroup. It is a subgroup of P, so it has order 1 or p. If it has order p, then P = P'. Otherwise, the intersection must be $\{e\}$.

Lemma 0.12. Let G be a group of order pq where p, q are distinct primes and p < q. Then G has a normal subgroup of order q.

Proof. Let n_q be the number of Sylow q-subgroups of G. We know that n_q divides |G| and $n_q \equiv 1 \mod q$, so if $n_q \neq 1$ then $n_q > q > p$. But then $n_q = |G|$, which is impossible. Thus $n_q = 1$, thus any Sylow q-subgroup an unique. (We know a Sylow q-subgroup exists by the first Sylow Theorem.)

Proposition 0.13 (Exercise 21). Let G be a finite group and H a subgroup. Let P_H be a p-Sylow subgroup of H. Then there exists a p-Sylow subgroup P of G such that $P_H = P \cap H$.

Proof. Since P_H is a p-Sylow subgroup of H, it is a p-subgroup of G, so by the first Sylow theorem there exists a p-Sylow subgroup P of G such that $P_H \subset P$. Then we have $P_H \subset P$ and $P_H \subset H$, so $P_H \subset P \cap H$. As a result, $|P_H| \leq |P \cap H|$.

The intersection of subgroups is a subgroup, so $P \cap H$ is a subgroup of H and of P. By Lagrange's Theorem, since $P \cap H$ is a subgroup of P it is a p-group, and since it is a subgroup of H its order is no more than the order of P_H , since P_H is a p-Sylow. That is, $|P \cap H| \leq |P_H|$. Since we have $|P_H| \leq |P \cap H|$ from before, we then have $|P_H| = |P \cap H|$. Any subset of a finite set with the same order must be the whole set, so $P_H = P \cap H$. \square

Proposition 0.14 (Exercise 23a). Let P, P' be p-Sylow subgroups of a finite group G, such that $P' \subset N(P)$. Then P' = P. Consequently, P is the unique p-Sylow subgroup of N(P).

Proof. Let P have order p^k , that is, let k be the highest power of p dividing |G|. We know that P is normal in N(P). Since $P' \subset N(H)$, we know that PP' is a subgroup of N(P). By the second isomorphism theorem,

$$|PP'| = \frac{|P||P'|}{|P \cap P'|} \implies |PP'||P \cap P'| = p^{2k}$$

from this we know that PP' and $P \cap P'$ are both p-groups. We know that $P \subset PP'$ so |PP'| is at least p^k . Since k is the highest power of p dividing G and PP' is a subgroup of G, |PP'| cannot be greater than p^k , so we have $|PP'| = p^k$. Thus $|P \cap P'| = p^k$. Since P has order p^k and $P \subset P \cap P'$, it must be that $P \cap P' = P$. Thus $P \subset P'$. Since P' also has order p^k , it similarly follows that $P' \subset P$. Thus P = P'. From this it follows that any p-Sylow subgroup of P is equal to P, so P is the unique P-Sylow subgroup of P is P.

Proposition 0.15 (Exercise 23b). Let G be a finite group and P, P' be p-Sylow subgroups such that N(P') = N(P). Then P' = P.

Proof. Suppose that N(P') = N(P). We know that $P' \subset N(P')$, so $P' \subset N(P)$. Then by part (a), P = P'.

Proposition 0.16 (Exercise 23c). Let G be a finite group and P be a p-Sylow subgroups. Then N(N(P)) = N(P).

Proof. We kow that $P \subset N(P) \subset N(N(P))$, so we just need to show that $N(N(P)) \subset N(P)$. Let $x \in N(N(P))$. First note that $xN(P)x^{-1} = N(P)$ since N(P) is a normal subgroup of G. Then $xPx^{-1} \subset xN(P)x^{-1} = N(P)$ so xPx^{-1} is a p-Sylow subgroup of N(P). By part (a), P is the unique p-Sylow subgroup of N(P), so $xPx^{-1} = P$. Thus $x \in N(P)$. Thus we have shown that $N(N(P)) \subset N(P)$, so we have equality.

Lemma 0.17 (for Exercise 28, repeated from Homework 1). Let G be a group such that G/Z(G) is cyclic. Then G is abelian.

Proof. Since G/Z(G) is cyclic, it can be written as $\langle xZ(G)\rangle$ for some $x \in G$. Let $g \in G$. Then $gZ(G) = x^nZ(G)$ for some n, and so $x^{-n}g \in Z(G)$. Let $z = x^{-n}g$, then $g = x^nz$. Thus every element of G can be written in the form x^kz for some $z \in Z$. Let $g, h \in H$, and write them as $g = x^nz_1, h = x^mz_2$. Then, noting that z_1, z_2 commute with everything in G and x^m commutes with x^n ,

$$gh = x^n z_1 x^m z_2 = x^n x^m z_1 z_2 = x^m x^n z_2 z_1 = x^m z_2 x^n z_1 = hg$$

Thus G is abelian.

Lemma 0.18 (for Exercise 28). Let p be a prime and let G be a group of order p^2 . Then G is abelian.

Proof. Since G is a p-group, it has non-trivial center, so |Z(G)| = p or $|Z(G)| = p^2$. If the center has order p^2 then G is abelian. If |Z(G)| = p then $|G/Z(G)| = |G|/|Z(G)| = p^2/p = p$, so G/Z(G) has prime order, so it is cyclic. Then G is abelian by the above lemma.

Lemma 0.19 (for Exercise 28). Let G be a group and p a prime dividing the order of G. Let n_p be the number of p-Sylow subgroups of G. Then $n_p = [G : N(P)]$. Consequently, n_p divides G, and p does not divide n_p .

Proof. Let G be a group and let $\operatorname{Syl}_p(G)$ be the set of p-Sylow subgroups of G. (We have $n_p = \operatorname{Syl}_p(G)$ by definition.) Let G act on $\operatorname{Syl}_p(G)$ by conjugation, and let $P \in \operatorname{Syl}_p(G)$. By the second Sylow theorem, the orbit of P is $\operatorname{Syl}_p(G)$. Then by the orbit-stabilizer theorem,

$$|\operatorname{Syl}_p(G)| = |\operatorname{orb}_G(P)| = |G|/|\operatorname{stab}_G(P)|$$

The stabilizer of P is the set

$$\{g \in G : gPg^{-1} = P\}$$

which is precisely the normalizer of P, $N_G(P)$. The normalizer of any subgroup is a normal subgroup, so

$$n_p = |\operatorname{Syl}_p(G)| = |G|/|N_G(P)| = [G:N_G(P)]$$

Then by Lagrange's Theorem, n_p divides |G|. We know that P is a subgroup of $N_G(P)$, so p^k divides $|N_G(P)|$. Thus n_p divides $|G|/p^k$. Since P is a p-Sylow subgroup of G, no higher power of p divides |G|, so $|G|/p^k$ is not divisible by p. Thus n_p is not divisible by p.

Lemma 0.20 (repeated from earlier in this document). Let P, P' be p-Sylow subgroups of G with |P| = |P'| = p. Then P = P' or $P \cap P' = \{e\}$.

Proposition 0.21 (Exercise 28). Let p, q be distinct primes and let G be a group of order p^2q . Then G is solvable and it has a normal Sylow subgroup.

Proof. Let P be a p-Sylow subgroup (of order p^2) and Q be a q-Sylow subgroup (of order q). First we claim that one of P, Q must be normal. Let n_p be the number of p-Sylow subgroups and n_q be the number of q-Sylow subgroups. If $n_p = 1$ then P is normal, and if $n_q = 1$ then Q is normal, so assume that neither is equal to one.

By our lemmas, n_p divides $|G| = p^2q$ but is not divisible by p, so $n_p = 1$ or $n_p = q$, but we already ruled out $n_p = 1$. By the third Sylow theorem, $n_p = q \equiv 1 \mod p$, and since $q \neq 1$, this implies q = pk + 1 for $k \geq 1$, so q > p. Also by our lemmas, n_q divides p^2q but is not divisible by q, so $n_q = p$ or $n_q = p^2$. Again by the third Sylow theorem, $n_q \equiv 1 \mod q$. Since q > p, this rules out $n_q = p$, so we have $n_q = p^2$.

Using Lagrange's theorem, every element of G has order $1, p, p^2$, or q. An element of order q must be contained in a q-Sylow subgroup, so there are $n_q(q-1) = p^2(q-1)$ elements of order q (note that distinct q-Sylow subgroups of order q intersect only in the identity by a previous lemma). Any remaining element of G has order dividing p^2 , so there are $p^2q - p^2(q-1) = p^2$ elements of order dividing p^2 . Since we have the p-Sylow subgroup P which has p^2 elements, this can be the only p-Sylow subgroup. Thus $n_p = 1$, which contradicts our earlier assumption that $n_p \neq 1$. Thus one of P, Q is normal.

If P is normal, then

$$G \supset P \supset \{e\}$$

is a normal tower. We know that $|G/P| = p^2q/p^2 = q$ so |G/P| is cyclic and hence abelian, and since $|P| = p^2$ we know that P is abelian, so it is a abelian tower. On the other hand, if Q is normal, then

$$G\supset Q\supset \{e\}$$

is a normal tower, and it is also abelian, since $|G/Q|=p^2$ so G/Q is abelian and |Q|=q so Q is cyclic and hence abelian. Hence G is solvable.

Lemma 0.22 (for Exercise 36). Let $\sigma \in S_n$, where $\sigma = (a_1 \ a_2 \dots a_k)$. Then for any $\tau \in S_n$, we have

$$\tau \sigma \tau^{-1} = (\tau(a_1) \ \tau(a_2) \dots \tau(a_k))$$

so conjugation in S_n preserves cycle structure. Conversely, for any $\sigma, \tau \in S_n$ with the same cycle structure, that is, if

$$\sigma = (a_1 \ a_2 \dots a_k)$$

$$\tau = (b_1 \ b_2 \dots b_k)$$

then σ and τ are conjugate.

Proof. We need to show that $\tau \sigma \tau^{-1}(\tau(a_i)) = \tau(a_{i+1 \mod k})$. By definition, $\sigma(a_i) = \sigma(a_{i+1 \mod k})$. Thus

$$\tau \sigma \tau^{-1} \tau(a_i) = \tau \sigma(a_i) = \tau(a_{i+1 \bmod k})$$

We also note that $\tau \sigma \tau^{-1}$ leaves fixed any element that σ fixes.

For the converse, let $\sigma = (a_1 \dots a_k), \tau = (b_1 \dots b_k)$. Define a permutation α by $\alpha(a_i) = b_i$, and $\alpha(x) = x$ for $x \neq a_i$. Then

$$\alpha\sigma\alpha^{-1} = (\alpha(a_1)\dots\alpha(a_k)) = (b_1\dots b_k) = \tau$$

so σ , τ are conjugate in S_n .

Proposition 0.23 (Exercise 36). The conjugacy class of $\sigma = (1 \ 2 \ 3 \dots n) \in S_n$ has (n-1)! elements. Consequently, the centralizer of σ is precisely the cyclic subgroup generated by σ .

Proof. By the lemma above, an element τ of S_n is conjugate to σ if and only if it is an n-cycle. An τ must be of the form $(a_1 \dots a_n)$ where all the a_i are distinct. In particular, some a_i must be equal to n. We can then rewrite τ as $\tau = (n \ a_2 \dots a_k)$.

We claim that a_2 can be anything in $\{1, \ldots n-1\}$ and that all such choices give distinct n-cycles. Suppose $x, y \in \{1, \ldots n-1\}$. Then $(1 \ x \ldots a_k) \neq (1 \ y \ldots a_k)$ since the first maps 1 to x and the second maps 1 to y. By a similar reasoning, once a choice for a_2 is fixed, there are n-2 choices for a_3 , et cetera. Hence there are $(n-1)(n-2)\ldots(2)(1)=(n-1)!$ distinct n-cycles. Thus the conjugacy class of σ has (n-1)! elements.

Finally, the index of the centralizer of σ is equal to the size of the conjugacy class, so

$$(n-1)! = [S_n : C(\sigma)] = |S_n|/|C(\sigma)| = n!/|C(\sigma)|$$

which gives us $|C(\sigma)| = n$. Since the cyclic subgroup generated by σ has n elements and any subgroup containing σ contains that cyclic subgroup, that cyclic subgroup is all of $C(\sigma)$. Thus $C(\sigma) = \langle \sigma \rangle$.

Proposition 0.24 (Exercise 38a). The symmetric group S_n is generated by the transpositions $(12), (13), (14), \dots (1n)$.

Proof. We can write any $\sigma \in S_n$ as a product of disjoint cycles,

$$\sigma = (a_1 \dots a_k)(b_1 \dots b_i)(c_1 \dots c_m) \dots$$

We just need to show that any disjoint cycle can be written as a product of $(12), (13), \ldots (1n)$. We can write a cycle $(a_1 \ldots a_k)$ as

$$(a_1 \dots a_k) = (a_1 a_k)(a_1 a_{k-1}) \dots (a_1 a_3)(a_1 a_2)$$

We can write each of the terms in the above RHS as

$$(a_1 \ a_j) = (1 \ a_1)(1 \ a_j)(1 \ a_1)$$

as long as $a_1 \neq 1$ and $a_j \neq 1$. But if $a_1 = 1$ or $a_j = 1$, then $(a_1 \ a_j)$ is already one of our generators. Thus we can write $(a_1 \dots a_k)$ as product of our generators, and hence we can write σ as a product of our generators.

Proposition 0.25 (Exercise 38b). The symmetric group S_n is generated by the transpositions $(12), (23), (34), \ldots (n-1, n)$.

Proof. We will show that these transpositions generate the transpositions $(12), (13), \ldots (1n)$, then use part (a). Let H be the subgroup generated by $(12), (23), \ldots (n-1, n)$. Note that

$$(12)(23)(12) = (13)$$

$$(13)(34)(13) = (14)$$

$$\vdots$$

$$(1, n-1)(n-1, n)(1, n-1) = (1n)$$

so $(13), (14), \ldots (1n) \in H$. Thus H contains the generating set $(12), (13), \ldots (1n)$ so by part (a) H is S_n .

Proposition 0.26 (Exercise 38c). S_n is generated by the cycles (12), (123...n).

Proof. We compute

$$(123...n)(12)(123...n)^{-1} = (123...n)(12)(n, n - 1...321) = (23)$$

$$(123...n)(23)(123...n)^{-1} = (123...n)(23)(n, n - 1...321) = (34)$$

$$\vdots$$

$$(123...n)(a, a + 1)(123...n)^{-1} = (123...n)(a, a + 1)(n, n - 1...321) = (a + 1, a + 2)$$

where a+1 and a+2 are understood to be addition modulo n. Hence any subgroup containing the two cycles (12), (123...n) contains all the transpositions (12), (23), ..., (n-1,n). As shown in part (b), these transpositions generate S_n , so the claim is proven.

Proposition 0.27 (Exercise 38d). If n is prime, and τ is the transposition (a b) (where $a \neq b$), then τ and $\sigma = (1 \ 2 \dots n)$ generate S_n .

Proof. Since n is prime, and we have $a \neq b$, we get that $a-b \not\equiv 0 \mod n$, so σ^{b-a} is an n-cycle. Notice that in general we have $\sigma^k(x) = x+k$, so specifically, $\sigma^{b-a}(a) = a+b-a = b$. Thus σ is an n-cycle of the form $(a \ b \dots)$. Now we relabel elements of $\{1, 2, \dots n\}$ so that $\sigma = (1 \ 2 \dots n)$. In particular, τ becomes $(1 \ 2)$ in this new relabeling. So $\langle \sigma, \tau \rangle = \langle (1 \ 2), (1 \ 2 \dots) \rangle$. These two generate S_n by part (c), so σ, τ generate S_n .