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Lemma 0.1 (for Exercise 1a). Let Zn be the finite cyclic group of order n. Then Aut(Zn)
has order φ(n) (φ is the Euler totient function).

Proof. First we show that Aut(Zn) has order φ(n). By Proposition 4.3(ii) (Lang), the gen-
erators of Zn are the positive integers a less than n that are relatively prime to n. By 4.3(iii)
(Lang), for any such a relatively prime to n, there is an automorphism γa : Zn → Zn that
maps 1 onto a. This determines γa completely. Thus there are exactly φ(n) automorphisms
of Zn.

Corollary 0.2 (for Exercise 1a). Let Zp be a cylic group of prime order. Then Aut(Zp) has
order p− 1.

Proof. By above, Aut(Zp) has order φ(p). φ(p) counts the number of positive integers less
than p that are coprime with p. As p is prime, this is all the numbers 1, 2, . . . p − 1. Thus
φ(p) = p− 1.

Lemma 0.3 (for Exercise 1a). Let G,H be finite groups such that gcd(|G|, |H|) = 1. Then
any group homomorphism ψ : G→ H is trivial, that is, φ(g) = eH for g ∈ G.

Proof. We know that ψ(G) is a subgroup of H, so by Lagrange’s Theorem, |ψ(G)| divides
|H|. We also know that kerψ is a normal subgruop of G, so by the first isomorphism theorem,
G/ kerψ ∼= ψ(G) so |ψ(G)| = |G|/| kerψ| so |ψ(G)| divides |G|. Since gcd(|G|, |H|) = 1 by
hypothesis and |ψ(G)| divides both, it must be one. Thus ψ(G) = {e}.

Lemma 0.4. Let G be a group, and let P be a p-subgroup and Q be a q-subgroup, where p, q
are distinct primes. Then P ∩Q = {e}.

Proof. Any x ∈ P has order divisible by p, except the identity. Any y ∈ Q has order divisible
by q, except the identity. Since p, q are primes, this means that P ∩Q = {e}.

Lemma 0.5 (for Exercise 1a). Let G,H be cyclic groups of coprime order. Then G×H is
cyclic.

Proof. Let g be a generator for G and h a generator for H. We claim that (g, h) is a generator
for G ×H. We know that the order of (g, h) divides pq, the order of G ×H. Hence it has
order 1, p, q, or pq. It can’t have order 1. It doesn’t have order p since h has order q and
p, q are coprime. Similarly, it doesn’t have order q. Thus (h, g) has order pq, so it generates
G×H.
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Proposition 0.6 (Exercise 1a). Let G be a group of order pq where p, q are primes such
that p < q and q 6≡ 1 mod p. Then G is cyclic.

Proof. Let Hq be the Sylow subgroup of order q. Then Hq is normal by Lemma 6.7 (Lang).
Let Hp be the Sylow subgroup of order p. Then Hp operates by conjugation on Hq, which
gives us a homomorphism ψ : Hp → Aut(Hq) (where ψ(x) is the conjugation y 7→ xyx−1).
We know that Hp has order p, and by our lemma, Aut(Hq) has order q − 1.

By hypothesis, q 6≡ 1 mod p, so p does not divide q − 1. Since p is prime, this means
that gcd(p, q − 1) = 1. Thus by our second lemma, ψ is the trivial homomorphism. This
implies that for x ∈ Hp, y ∈ Hq, we have xyx−1 = y =⇒ xy = yx. Finally, we also have
P ∩Q = {e}, so by Proposition 2.1 (Lang), G ∼= P ×Q. By our last lemma, the product of
cyclic groups of coprime order is cyclic, so G is cyclic of order pq.

Lemma 0.7 (for Exercise 1b). Let N,H be groups and ψ : H → Aut(N). Then the semidi-
rect product N oψ H is abelian if and only if N,H are both abelian and ψ is the trivial
homomorphism.

Proof. First suppose that N,H are abelian and ψ is trivial, that is, ψ(h) = IdN for h ∈ H.
Then the product in N oH is given by

(n1, h1)(n2, h2) = (n1ψ(h1)n2, h1h2) = (n1n2, h1h2)

so N oH ∼= N ⊕H, hence N oH is abelian.
Now supppose that N oH is abelian. Then every subgroup is abelian, so by identifying

N,H with the subgroups

N ∼= {(n, eH) : n ∈ N} ⊂ N oH

H ∼= {(eN , h) : h ∈ H} ⊂ N oH

we see that N,H must be abelian. As H is normal, ψ must be trivial by Exercise 12(b) from
Homework 2.

Proposition 0.8 (Exercise 1b). Let G be a group of order pq where p, q are primes such
that p < q and q ≡ 1 mod p. Then there exists a nonabelian group of order pq.

Proof. We repeat the first paragraph of the proof for part (a) since it still holds. Let Hq, Hp

be Sylow subgroups of order q, p. Then Hq is normal, and Hp operates by conjugation on
Hq, which gives a homomorphism ψ : Hp → Aut(Hq). Hp has order p, and Aut(Hq) has
order q − 1.

Now the proof diverges. By hypothesis, p|(q − 1). Since Aut(Hq) has order q − 1, by
Cauchy’s Theorem there exists an element of y ∈ Aut(Hq) of order p. Let x be a generator
of Hp. Then we define

φ : Hp → Aut(Hq)

φ(x) = y

and we extend φ to a homomorphism by defining φ(xk) = φ(x)k = yk. Thus φ is a nontrivial
homomorphism, so by the above lemma, Hq oφ Hp is nonabelian. Thus Hq oφ Hp is a
nonabelian group of order pq.
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Lemma 0.9 (for Exercise 2). Abelian groups are solvable.

Proof. Let G be an abelian group. Then G ⊃ {e} is a normal abelian tower, so G is
solvable.

Corollary 0.10 (for Exercise 2). Cyclic groups are solvable.

Proof. Every cyclic group is abelian, and hence solvable by the above lemma.

Lemma 0.11 (for Exercises 2,28). Let P, P ′ be p-Sylow subgroups of G with |P | = |P ′| = p.
Then P = P ′ or P ∩ P ′ = {e}.

Proof. As P, P ′ are subgroups, their intersection P ∩ P ′ is a subgroup. It is a subgroup of
P , so it has order 1 or p. If it has order p, then P = P ′. Otherwise, the intersection must
be {e}.

Lemma 0.12. Let G be a group of order pq where p, q are distinct primes and p < q. Then
G has a normal subgroup of order q.

Proof. Let nq be the number of Sylow q-subgroups of G. We know that nq divides |G| and
nq ≡ 1 mod q, so if nq 6= 1 then nq > q > p. But then nq = |G|, which is impossible. Thus
nq = 1, thus any Sylow q-subgroup an unique. (We know a Sylow q-subgroup exists by the
first Sylow Theorem.)

Proposition 0.13 (Exercise 21). Let G be a finite group and H a subgroup. Let PH be a
p-Sylow subgroup of H. Then there exists a p-Sylow subgroup P of G such that PH = P ∩H.

Proof. Since PH is a p-Sylow subgroup of H, it is a p-subgroup of G, so by the first Sylow
theorem there exists a p-Sylow subgroup P of G such that PH ⊂ P . Then we have PH ⊂ P
and PH ⊂ H, so PH ⊂ P ∩H. As a result, |PH | ≤ |P ∩H|.

The intersection of subgroups is a subgroup, so P ∩ H is a subgroup of H and of P .
By Lagrange’s Theorem, since P ∩ H is a subgroup of P it is a p-group, and since it is a
subgroup of H its order is no more than the order of PH , since PH is a p-Sylow. That is,
|P ∩H| ≤ |PH |. Since we have |PH | ≤ |P ∩H| from before, we then have |PH | = |P ∩H|.
Any subset of a finite set with the same order must be the whole set, so PH = P ∩H.

Proposition 0.14 (Exercise 23a). Let P, P ′ be p-Sylow subgroups of a finite group G, such
that P ′ ⊂ N(P ). Then P ′ = P . Consequently, P is the unique p-Sylow subgroup of N(P ).

Proof. Let P have order pk, that is, let k be the highest power of p dividing |G|. We know
that P is normal in N(P ). Since P ′ ⊂ N(H), we know that PP ′ is a subgroup of N(P ). By
the second isomorphism theorem,

|PP ′| = |P ||P ′|
|P ∩ P ′|

=⇒ |PP ′||P ∩ P ′| = p2k

from this we know that PP ′ and P ∩P ′ are both p-groups. We know that P ⊂ PP ′ so |PP ′|
is at least pk. Since k is the highest power of p dividing G and PP ′ is a subgroup of G, |PP ′|
cannot be greater than pk, so we have |PP ′| = pk. Thus |P ∩P ′| = pk. Since P has order pk

and P ⊂ P ∩ P ′, it must be that P ∩ P ′ = P . Thus P ⊂ P ′. Since P ′ also has order pk, it
similarly follows that P ′ ⊂ P . Thus P = P ′. From this it follows that any p-Sylow subgroup
of N(P ) is equal to P , so P is the unique p-Sylow subgroup of N(P ).
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Proposition 0.15 (Exercise 23b). Let G be a finite group and P, P ′ be p-Sylow subgroups
such that N(P ′) = N(P ). Then P ′ = P .

Proof. Suppose that N(P ′) = N(P ). We know that P ′ ⊂ N(P ′), so P ′ ⊂ N(P ). Then by
part (a), P = P ′.

Proposition 0.16 (Exercise 23c). Let G be a finite group and P be a p-Sylow subgroups.
Then N(N(P )) = N(P ).

Proof. We kow that P ⊂ N(P ) ⊂ N(N(P )), so we just need to show that N(N(P )) ⊂ N(P ).
Let x ∈ N(N(P )). First note that xN(P )x−1 = N(P ) since N(P ) is a normal subgroup of
G. Then xPx−1 ⊂ xN(P )x−1 = N(P ) so xPx−1 is a p-Sylow subgroup of N(P ). By part
(a), P is the unique p-Sylow subgroup of N(P ), so xPx−1 = P . Thus x ∈ N(P ). Thus we
have shown that N(N(P )) ⊂ N(P ), so we have equality.

Lemma 0.17 (for Exercise 28, repeated from Homework 1). Let G be a group such that
G/Z(G) is cyclic. Then G is abelian.

Proof. Since G/Z(G) is cyclic, it can be written as 〈xZ(G)〉 for some x ∈ G. Let g ∈ G.
Then gZ(G) = xnZ(G) for some n, and so x−ng ∈ Z(G). Let z = x−ng, then g = xnz. Thus
every element of G can be written in the form xkz for some z ∈ Z. Let g, h ∈ H, and write
them as g = xnz1, h = xmz2. Then, noting that z1, z2 commute with everything in G and
xm commutes with xn,

gh = xnz1x
mz2 = xnxmz1z2 = xmxnz2z1 = xmz2x

nz1 = hg

Thus G is abelian.

Lemma 0.18 (for Exercise 28). Let p be a prime and let G be a group of order p2. Then G
is abelian.

Proof. Since G is a p-group, it has non-trivial center, so |Z(G)| = p or |Z(G)| = p2. If the
center has order p2 then G is abelian. If |Z(G)| = p then |G/Z(G)| = |G|/|Z(G)| = p2/p = p,
so G/Z(G) has prime order, so it is cyclic. Then G is abelian by the above lemma.

Lemma 0.19 (for Exercise 28). Let G be a group and p a prime dividing the order of G.
Let np be the number of p-Sylow subgroups of G. Then np = [G : N(P )]. Consequently, np
divides G, and p does not divide np.

Proof. Let G be a group and let Sylp(G) be the set of p-Sylow subgroups of G. (We have
np = Sylp(G) by definition.) Let G act on Sylp(G) by conjugation, and let P ∈ Sylp(G). By
the second Sylow theorem, the orbit of P is Sylp(G). Then by the orbit-stabilizer theorem,

| Sylp(G)| = | orbG(P )| = |G|/| stabG(P )|

The stabilizer of P is the set

{g ∈ G : gPg−1 = P}
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which is precisely the normalizer of P , NG(P ). The normalizer of any subgroup is a normal
subgroup, so

np = | Sylp(G)| = |G|/|NG(P )| = [G : NG(P )]

Then by Lagrange’s Theorem, np divides |G|. We know that P is a subgroup of NG(P ), so
pk divides |NG(P )|. Thus np divides |G|/pk. Since P is a p-Sylow subgroup of G, no higher
power of p divides |G|, so |G|/pk is not divisible by p. Thus np is not divisible by p.

Lemma 0.20 (repeated from earlier in this document). Let P, P ′ be p-Sylow subgroups of
G with |P | = |P ′| = p. Then P = P ′ or P ∩ P ′ = {e}.

Proposition 0.21 (Exercise 28). Let p, q be distinct primes and let G be a group of order
p2q. Then G is solvable and it has a normal Sylow subgroup.

Proof. Let P be a p-Sylow subgroup (of order p2) and Q be a q-Sylow subgroup (of order q).
First we claim that one of P,Q must be normal. Let np be the number of p-Sylow subgroups
and nq be the number of q-Sylow subgroups. If np = 1 then P is normal, and if nq = 1 then
Q is normal, so assume that neither is equal to one.

By our lemmas, np divides |G| = p2q but is not divisible by p, so np = 1 or np = q, but
we already ruled out np = 1. By the third Sylow theorem, np = q ≡ 1 mod p, and since
q 6= 1, this implies q = pk+ 1 for k ≥ 1, so q > p. Also by our lemmas, nq divides p2q but is
not divisible by q, so nq = p or nq = p2. Again by the third Sylow theorem, nq ≡ 1 mod q.
Since q > p, this rules out nq = p, so we have nq = p2.

Using Lagrange’s theorem, every element of G has order 1, p, p2, or q. An element of
order q must be contained in a q-Sylow subgroup, so there are nq(q−1) = p2(q−1) elements
of order q (note that distinct q-Sylow subgroups of order q intersect only in the identity
by a previous lemma). Any remaining element of G has order dividing p2, so there are
p2q − p2(q − 1) = p2 elements of order dividing p2. Since we have the p-Sylow subgroup
P which has p2 elements, this can be the only p-Sylow subgroup. Thus np = 1, which
contradicts our earlier assumption that np 6= 1. Thus one of P,Q is normal.

If P is normal, then

G ⊃ P ⊃ {e}

is a normal tower. We know that |G/P | = p2q/p2 = q so |G/P | is cyclic and hence abelian,
and since |P | = p2 we know that P is abelian, so it is a abelian tower. On the other hand,
if Q is normal, then

G ⊃ Q ⊃ {e}

is a normal tower, and it is also abelian, since |G/Q| = p2 so G/Q is abelian and |Q| = q so
Q is cyclic and hence abelian. Hence G is solvable.

Lemma 0.22 (for Exercise 36). Let σ ∈ Sn, where σ = (a1 a2 . . . ak). Then for any τ ∈ Sn,
we have

τστ−1 = (τ(a1) τ(a2) . . . τ(ak))
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so conjugation in Sn preserves cycle structure. Conversely, for any σ, τ ∈ Sn with the same
cycle structure, that is, if

σ = (a1 a2 . . . ak)

τ = (b1 b2 . . . bk)

then σ and τ are conjugate.

Proof. We need to show that τστ−1(τ(ai)) = τ(ai+1 mod k). By definition, σ(ai) = σ(ai+1 mod k).
Thus

τστ−1τ(ai) = τσ(ai) = τ(ai+1 mod k)

We also note that τστ−1 leaves fixed any element that σ fixes.
For the converse, let σ = (a1 . . . ak), τ = (b1 . . . bk). Define a permutation α by α(ai) = bi,

and α(x) = x for x 6= ai. Then

ασα−1 = (α(a1) . . . α(ak)) = (b1 . . . bk) = τ

so σ, τ are conjugate in Sn.

Proposition 0.23 (Exercise 36). The conjugacy class of σ = (1 2 3 . . . n) ∈ Sn has (n− 1)!
elements. Consequently, the centralizer of σ is precisely the cyclic subgroup generated by σ.

Proof. By the lemma above, an element τ of Sn is conjugate to σ if and only if it is an
n-cycle. An τ must be of the form (a1 . . . an) where all the ai are distinct. In particular,
some ai must be equal to n. We can then rewrite τ as τ = (n a2 . . . ak).

We claim that a2 can be anything in {1, . . . n− 1} and that all such choices give distinct
n-cycles. Suppose x, y ∈ {1, . . . n− 1}. Then (1 x . . . ak) 6= (1 y . . . ak) since the first maps 1
to x and the second maps 1 to y. By a similar reasoning, once a choice for a2 is fixed, there
are n−2 choices for a3, et cetera. Hence there are (n−1)(n−2) . . . (2)(1) = (n−1)! distinct
n-cycles. Thus the conjugacy class of σ has (n− 1)! elements.

Finally, the index of the centralizer of σ is equal to the size of the conjugacy class, so

(n− 1)! = [Sn : C(σ)] = |Sn|/|C(σ)| = n!/|C(σ)|

which gives us |C(σ)| = n. Since the cyclic subgroup generated by σ has n elements and
any subgroup containing σ contains that cyclic subgroup, that cyclic subgroup is all of C(σ).
Thus C(σ) = 〈σ〉.

Proposition 0.24 (Exercise 38a). The symmetric group Sn is generated by the transpositions
(12), (13), (14), . . . (1n).

Proof. We can write any σ ∈ Sn as a product of disjoint cycles,

σ = (a1 . . . ak)(b1 . . . bj)(c1 . . . cm) . . .

We just need to show that any disjoint cycle can be written as a product of (12), (13), . . . (1n).
We can write a cycle (a1 . . . ak) as

(a1 . . . ak) = (a1ak)(a1ak−1) . . . (a1a3)(a1a2)
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We can write each of the terms in the above RHS as

(a1 aj) = (1 a1)(1 aj)(1 a1)

as long as a1 6= 1 and aj 6= 1. But if a1 = 1 or aj = 1, then (a1 aj) is already one of our
generators. Thus we can write (a1 . . . ak) as product of our generators, and hence we can
write σ as a product of our generators.

Proposition 0.25 (Exercise 38b). The symmetric group Sn is generated by the transpositions
(12), (23), (34), . . . (n− 1, n).

Proof. We will show that these transpositions generate the transpositions (12), (13), . . . (1n),
then use part (a). Let H be the subgroup generated by (12), (23), . . . (n− 1, n). Note that

(12)(23)(12) = (13)

(13)(34)(13) = (14)

...

(1, n− 1)(n− 1, n)(1, n− 1) = (1n)

so (13), (14), . . . (1n) ∈ H. Thus H contains the generating set (12), (13), . . . (1n) so by part
(a) H is Sn.

Proposition 0.26 (Exercise 38c). Sn is generated by the cycles (12), (123 . . . n).

Proof. We compute

(123 . . . n)(12)(123 . . . n)−1 = (123 . . . n)(12)(n, n− 1 . . . 321) = (23)

(123 . . . n)(23)(123 . . . n)−1 = (123 . . . n)(23)(n, n− 1 . . . 321) = (34)

...

(123 . . . n)(a, a+ 1)(123 . . . n)−1 = (123 . . . n)(a, a+ 1)(n, n− 1 . . . 321) = (a+ 1, a+ 2)

where a+1 and a+2 are understood to be addition modulo n. Hence any subgroup containing
the two cycles (12), (123 . . . n) contains all the transpositions (12), (23), . . . (n − 1, n). As
shown in part (b), these transpositions generate Sn, so the claim is proven.

Proposition 0.27 (Exercise 38d). If n is prime, and τ is the tranposition (a b) (where
a 6= b), then τ and σ = (1 2 . . . n) generate Sn.

Proof. Since n is prime, and we have a 6= b, we get that a−b 6≡ 0 mod n, so σb−a is an n-cycle.
Notice that in general we have σk(x) = x+k, so specifically, σb−a(a) = a+b−a = b. Thus σ is
an n-cycle of the form (a b . . .). Now we relabel elements of {1, 2, . . . n} so that σ = (1 2 . . . n).
In particular, τ becomes (1 2) in this new relabeling. So 〈σ, τ〉 = 〈(1 2), (1 2 . . .)〉. These
two generate Sn by part (c), so σ, τ generate Sn.
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